
– usage –

Your tests should be written as a single .c file separate from the body of text containing your functionality
to be tested. A simple example might look something like this:

1 #include "simple -test.h"
2 #include "header_with_stuff_to_be_tested.h"
3
4 BEGIN_TEST
5
6 /* a simple test using only stack mem */
7 TEST("description of the first test")
8 {
9 int var1 =2;

10 int var2 =4;
11
12 /* add is a function included from our hypothetical
13 * header_with_stuff_to_be_tested */
14 EXPECT_INT("error message shown on failing",
15 var1+var2 , add(var1 , var2));
16 }
17
18 /* this test uses heap memory , so things get a bit
19 * more complicated */
20 TEST("this is the second test")
21 {
22 /* first , ensure all your pointers which will
23 * point to heap mem are declared */
24 char *heap_string=NULL;
25
26 /* next , declare a list of statements to be
27 * called to clean up memory once the test
28 * is completed */
29 CLEANUP(
30 if(heap_string != NULL)
31 free(heap_string);
32 );
33
34 /* then , define the body of the test */
35
36 /* STATE can be used to report (with pretty
37 * formatting) the current state within the
38 * test , which may be useful in the case of
39 * a segfault */
40 STATE("grabbing heap string");
41
42 heap_string=get_heap_string_value ();
43
44 EXPECT_STR("i suck at grabbing pointers!",
45 "expected value", heap_string);
46
47 /* finally , call RETURN (); to run the
48 * cleanup code and continue */
49 RETURN ();
50 }
51
52 END_TEST



If both tests above succeed, the output will look like this:

1 :: description of the first test
2 :: this is the second test

:: grabbing heap string...
:: success!

If the first test fails, it will look something like this:

1 :: description of the first test
:: FAIL: error message shown on failing
:: expected:6
:: actual:0



– defined macros –

BEGIN_TEST: must appear before all tests and after all global vari-
able declarations

END_TEST: must appear at the end of your test program

CLEANUP(statements): this defines a list of statements to run when the test
exits, either successfully or on a failure. it isn’t neces-
sary for a test to run, but, if it does appear, it must be
after the declaration of all variables to which it makes
reference.

RETURN(): place at the end of a test which uses CLEANUP to
ensure it is called before the test exits. i couldn’t find
any way around this without using more than just one
header file, so i hope it isn’t too annoying.

STATE(description): show a prettily-formatted description of the program’s
state during a test. takes printf-style arguments.

EXPECT_ZERO(summary, arg): fail if arg does not resolve to 0

EXPECT_ONE(summary, arg): fail if arg does not resolve to 1

EXPECT_GREATER_THAN_ZERO(summary, arg): fail if arg does not resolve to a value greater than 0.
this will be replaced with more generic integer com-
parisons soon.

EXPECT_INT(summary, arg1, arg2): fail if arg2 does not match the expected integer value
arg1

EXPECT_EQUAL_INT(summary, arg1, arg2): fail if arg1 and arg2 are not equal

EXPECT_UNEQUAL_INT(summary, arg1, arg2): fail if arg1 and arg2 are equal

EXPECT_STR(summary, arg1, arg2): fail if string arg2 does not match the expected string
value arg1

EXPECT_EQUAL_STR(summary, arg1, arg2): fail if arg1 and arg2 are not equivalent strings

EXPECT_UNEQUAL_STR(summary, arg1, arg2): fail if arg1 and arg2 are equivalent strings


